

PO Box 24516 Lansdowne 7779 Cape Town South Africa

ASSAY / ANALYTICAL PROCEDURE CHYMOTRYPSIN_BP

1. METHOD OF ASSAY:

The activity of chymotrypsin is determined by comparing the rate at which it hydrolyses ethyl N-Acetyl-L-Tyrosinate with the rate at which the standard preparation hydrolyses the same substrate under the same conditions.

2. <u>REAGENTS:</u>

2.1 0,001 M HCl:

Dilute 0,089ml concentrated HCl (MM 36,46) to 1 000ml with distilled water. Store on ice.

2.2 0,01 M CaCl₂:

Dissolve 1,47g CaCl₂.2H₂O (MM 147,0) or 1,11g CaCl₂ (MM 110,99) in 1 000ml distilled water.

2.3 0,02 M NaOH:

Dissolve 0,8g NaOH (MM 40,0) in 1 000ml distilled water.

2.4 SUBSTRATE(0,2M ATEE):

Dissolve 538,6mg N-Acetyl-L-Tyrosine Ethyl Ester [ATEE] (MM 251,3) or 577,2mg (MM 269,3) in 96% ethanol and dilute to 10ml ethanol.

2.5 **SAMPLE/REFERENCE STD:**

Dissolve 10mg F/D material in 100ml 0,001M HCl. Store on ice.

3. CALIBRATION OF pH ELECTRODE:

- a) Press 'On Button' and switch on printer
- b) Press up or down arrows to 'pH calibration' and 'OK'
- c) Press 'continue'
- d) Immerse electrode in pH4 buffer and press 'start' and 'OK'
- e) Press 'next point' and 'OK'
- f) Press 'end calibration' and 'OK'
- g) Results will print automatically
- h) Press 'Quit"

4. FILLING BURETTE (CRISON Titromatic) with 0,02M NaOH:

- a) Press up or down arrows to 'Manual Activation' and 'OK'
 - b) Press 'Burette' and 'OK'
 - c) Press ^ for 'empty' and 'OK' or
 - d) Press \lor to 'fill' and 'OK'
- e) Press 'ESC' and 'ESC' again

PROCEDURE: (All operations carried out using a jacketed glass reaction vessel and water bath set at 25°C)

- a) Add 30ml 0,01M CaCl₂ to glass reaction vessel
- b) Use up or down keys and press 'Titrate' and 'OK'.
- c) Use up or down keys and press 'continue' to stir
- d) Once solution has equilibrated to 25°C, continue stirring (stirs ± 1minute), add 1,05ml of 0,2M ATEE.
- e) Adjust pH to 8,00 with 0,02N NaOH by manually pressing 'Reagent add' and 'OK' to dispense NaOH(± 0,6ml).
- f) Once the pH is 8,00 add 150µl enzyme and press 'start STAT', 'OK' and then 'start titration' and 'OK'.
- g) An automatic titration is performed over 5minutes with a printout of the results.
- h) A titration is carried out on the reference sample as well as the unknown sample.
- i) Rinse the glass vessel after every titration, press 'continue' and 'OK' to repeat steps 5(b) to 5(f).
- j) To repeat assay press "continue" and "OK".

6. <u>CALCULATION:</u>

5.

					m' x v x A x DF
	Activity [µkatal/mg] =			=	m x v'
					mass of std x volume of sample x activity of std
	Activity [µkatal/mg] =			=	mass of sample x volume of std
Where:	m	=	mass in n	ng of the	e test sample
	m'	=	mass in n	ng of the	e reference sample
	v	=	volume ir	n ml of 0	,02N NaOH used per minute by the test solution
	v'	=	volume ir	n ml of 0	,02N NaOH used per minute by the reference solution
	DF	=	dilution f	actor	

A = activity of the reference in μ katal per mg

ASSAY / ANALYTICAL PROCEDURE DETERMINATION OF TRYPSIN IN CHYMOTRYPSIN_BP

1. <u>REACTION:</u>

The spot plate test is used to determine the level of trypsin in a chymotrypsin sample.

2. <u>REAGENTS:</u>

2.1 Methyl Red:

Dissolve 10 mg methyl red in 20 ml ethanol at 80% and filter if necessary. Store in an amber bottle at ambient temperature.

2.2 Methylene Blue:

Dissolve 20 mg methylene blue in 1 ml distilled water. Store in an amber bottle at ambient temperature.

2.3 Methyl Red/Methylene Blue Solution:

Mix 20ml solution 2.1 and 0,4ml solution 2.2.

2.4 Tris (hydroxymethyl)aminomethane Buffer pH8,1:

Dissolve 0,294 g $CaCl_2$ [MM 110,99] and 0,968 g Tris [MM 121,14] in 80 ml distilled water. Adjust pH to 8,1 and final volume to 100 ml with distilled water.

2.5 0,0265 M CaCl₂ pH8,1:

Dissolve 0,294 g CaCl₂ [MM 110,99] in 80 ml distilled water. Adjust pH to 8,1 and final volume to 100 ml with distilled water.

2.6 **SUBSTRATE:**

To 98,5 mg tosylarginine methyl ester hydrochloride-TAME [MM 378,88], add 5 ml tris(hydroxymethyl)aminomethane buffer pH 8,1(2.4) and dissolve. Add 2,5 ml of methyl red/methyleneblue solution(2.3) and dilute to 25 ml with distilled water. Prepare fresh with every test.

3. <u>SAMPLES:</u>

Dissolve sample/reference to a concentration of 10 mg/ml in distilled water.

4. <u>PROCEDURE:</u>

Transfer 0,05 ml CaCl₂ pH8,1(2.5) and 0,1 ml sample/reference onto a white spot plate. Add 0,2 ml of the substrate solution(2.6). Start the timer.

Note: If no purple colour develops within 3 minutes then not more than 1% trypsin is present in the sample.